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Single cell MS-based proteomics enables 
estimating the effect of perturbations from 
observational studies

• Understanding the proteome response to perturbations is an 
important step towards understanding the protein function

• Causal inference methods allow us to estimate this response 
from purely observational data (i.e., without performing the 
perturbation)

• Single cell proteomics allows us to do this better than 
traditional bulk proteomics
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Why do we need single cell?

• Remove confounding cell effects in 
bulk experiments

• Differentiate behavior of cellular sub-
populations

Specht and Slavov (2018). JPR 17(8)
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Standard statistical analysis

• Infer parameters of a distribution using 
samples from the distribution

• Use parameters to infer associations among 
variables

• Calculate P(Erk | Ras)

ErkRas
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Causal inference

• Infer parameters under changing conditions, 
e.g., in the presences of treatments or external 
interventions

• Calculate P(Erk | do(Ras))

ErkRas
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How to infer causality?

• Randomization
• Test if inhibiting Ras impacts Erk

• Split replicates into two groups: one who receives intervention, and 
one does not

• Estimate probability distribution in the presence of an intervention

• P(Erk | do(Ras))

ErkRas
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What if randomization is not possible?

• Only observational data available

• Can we still estimate the effect of the intervention
• Yes! (Under certain conditions)

ErkRas
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Estimate the effect of interventions using 
purely observational data

• Requirements for estimating the effect of interventions
• Observational experimental data

• Causal network (in the form of a directed acyclic graph (DAG))

• Not doing causal discovery

• Correct combination of graphical topology and measured proteins
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ErkRas



Causal network – 
IGF signaling pathway

Zucker J.  et al.  (2021). IEEE Trans. Big Data

• Insulin-like growth factor (IGF) or 
epidermal growth factor (EGF) 
trigger an event including the 
MAPK signaling pathway

• Well studied with dynamics 
characterized in ODE/SDE models

- Measured

- Latent (unmeasured)
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IGF signaling system

• Interested in the causal effect of 
Ras on Erk

• Latent confounder between SOS 
and PI3K

• P(Erk | do(Ras), SOS) is identifiable

- Measured

- Latent
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Zucker J.  et al.  (2021). IEEE Trans. Big Data



IGF signaling system

• Assume SOS was not measured

• Now we cannot close the “back-
door” path

• P(Erk | do(Ras)) is not identifiable

- Measured

- Latent
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Zucker J.  et al.  (2021). IEEE Trans. Big Data

SOS



Presentation Outline

• Problem statement

• Background

• Case studies – Targeted vs Discovery
• Targeted experiment (simulation)

• Discovery experiment (biological)

14



Application of causal inference is dependent on 
the  experimental design and biological question 
of interest
• Targeted Experiment

15

Construct graph of 
pathway/network 

of interest

Decide what 
proteins need to be 

measured

Run experiment to 
measure proteins of 
interest (SRM/PRM)



Application of causal inference is dependent on 
the  experimental design and biological question 
of interest
• Targeted Experiment

• Exploratory experiment
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Construct graph of 
pathway/network 

of interest

Decide what 
proteins need to be 

measured

Run experiment to 
measure proteins of 
interest (SRM/PRM)

Run experiment to 
measure many 

proteins (DIA/DDA)

Build a graph around 
the proteins that are 

measured

Determine what 
causal queries are 

possible
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Targeted experiments allow us to answer a 
specific question of interest
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Use latent variable model (LVM) to leverage 
information from unmeasured proteins
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Simulate bulk-MS data
• Linear relationships between proteins

• Peptide ions are missing with some probability of 
being missing at random and missing not at 
random

• Multiple cell types are mixed
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𝑅𝑎𝑠 = 𝛽𝑅𝑎𝑠0
+ 𝛽𝑅𝑎𝑠1

∗ 𝑆𝑂𝑆 + 𝜖𝑅𝑎𝑠

𝑅𝑎𝑓 = 𝛽𝑅𝑎𝑓0
+ 𝛽𝑅𝑎𝑓1

∗ 𝑅𝑎𝑠 + 𝛽𝑅𝑎𝑓2
∗ 𝐴𝑘𝑡 + 𝜖𝑅𝑎𝑓

𝑀𝑒𝑘 = 𝛽𝑀𝑒𝑘0
+ 𝛽𝑀𝑒𝑘1

∗ 𝑅𝑎𝑓 + 𝜖𝑀𝑒𝑘

𝐸𝑟𝑘 = 𝛽𝐸𝑟𝑘0
+ 𝛽𝐸𝑟𝑘1

∗ 𝑀𝑒𝑘 + 𝜖𝐸𝑟𝑘

System of linear relationships



Simulate bulk-MS data
• Linear relationships between nodes

• Peptide ions are missing with some 
probability of being missing at random and 
missing not at random

• Multiple cell types are mixed
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Average effect of increasing the log2 
intensity of Ras by 10 on Erk is 5.85

𝑃(𝐸𝑟𝑘 | 𝑑𝑜(𝑅𝑎𝑠 = 20))  −  𝑃(𝐸𝑟𝑘 | 𝑑𝑜(𝑅𝑎𝑠 = 10))  =  5.85

Ground truth average causal effect (ACE)



Interventional results are very different from 
true effect
• Compare two interventions

• P(Erk | do(Ras = 10)

• P(Erk | do(Ras = 20)

• Average causal effect (ACE)

• 1.3

23

True ACE: 
5.85



Why is the estimation incorrect?
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Multiple cell types mixed confounded the 
inference

Cell Type

P(Erk | do(Ras)) is not identifiable
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Using single cell data, we can observe cell type

Cell Type

P(Erk | do(Ras), Cell Type) is identifiable
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Using single cells show the true relationship
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Splitting models up by cell result in a more 
accurate ACE estimate

ACE=5.25 ACE=6.18 ACE=4.04

True ACE = 5.85
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Even when using single cell data, we still need 
sufficient replicates 

30

1 cell type 
measured



Even when using single cell data, we still need 
sufficient replicates
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In the presence of latent confounders (e.g., bulk 
proteomics) no number of replicates can recover the 
ACE

32

3 cell types 
measured in 

each bulk 
sample



In the presence of latent confounders (e.g., bulk 
proteomics) no number of replicates can recover the 
ACE
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When observations are MNAR the true 
correlation/causal effect is masked
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When observations are MNAR the true 
correlation/causal effect is masked
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Proteins with low 
abundance missing



Causal imputation correctly recovers causal 
effect in the presence of missing data
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Single Cell experiment - Leduc et al, 2022

•  1556 single cells prepared by nPOP 
method and acquired with TMT 18-plex

• Melanoma and monocyte cell types

• 2844 proteins identified and quantified 
with MaxQuant

• Data processed with methods in 
MSstatsTMT

Leduc A, et al. (2023) Exploring functional protein 
covariation across single cells using nPOP, Genome Biol
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Building a causal network around measured 
proteins
• Creating a hand tailored network across thousands of proteins is very 

challenging

• Leverage biological databases to extract causal relationships between 
proteins in the system

• We use the INDRA database, which includes causal information 
between proteins
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Naïve network extraction results in unusable 
and uninterpretable network

• Many types of connections 
may not be relevant

• Some edges have very low 
evidence

• Not all edges are applicable 
to the biological question of 
interest

41



Thoughtful queries results in reasonable 
networks

• Focus on abundance events

• Look at specific pathways of 
interest that show correlation in 
data

• Filter for edges with high 
confidence

• Filter for biologically relevant 
questions
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BUB1

TPX2

CDK1CDK2

FAS CDC5L

STAT3



Final causal model
BUB1

TPX2

CDK1CDK2

FAS CDC5L

STAT3
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Pathway of interest 
shows correlation in 
the data
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Intervention results
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Protein-level 
imputation
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Melanoma Cells



Conclusions

• Estimation of the effect of interventions is possible given 
observational single cell data

• Targeted and exploratory studies possible, depending on the goal of 
the experiment
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Existing challenges

Near term (computational)

• More work to be done on building causal networks

• Data processing of single cell experiments

Long term (experimental)

• Post-translational modifications

• Temporal information
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