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Single cell MS-based proteomics enables
estimating the effect of perturbations from
observational studies

* Understanding the proteome response to perturbations is an
important step towards understanding the protein function

e Causal inference methods allow us to estimate this response
from purely observational data (i.e., without performing the
perturbation)

* Single cell proteomics allows us to do this better than
traditional bulk proteomics



Why do we need single cell?
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Standard statistical analysis

Regression Analysis

* Infer parameters of a distribution using 10
samples from the distribution

* Use parameters to infer associations among
. V4
variables 5 6.
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Causal inference

* Infer parameters under changing conditions,
e.g., in the presences of treatments or external
Interventions

* Calculate P(Erk | do(Ras))




How to infer causality?

* Randomization
 Test if inhibiting Ras impacts Erk

* Split replicates into two groups: one who receives intervention, and
one does not

* Estimate probability distribution in the presence of an intervention
* P(Erk | do(Ras))




What if randomization is not possible?

* Only observational data available

e Can we still estimate the effect of the intervention
* Yes! (Under certain conditions)
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Estimate the effect of interventions using
purely observational data

* Requirements for estimating the effect of interventions
* Observational experimental data
e Causal network (in the form of a directed acyclic graph (DAG))
* Not doing causal discovery
* Correct combination of graphical topology and measured proteins
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cellular membrane

Causal network —
|GF sighaling pathway

* Insulin-like growth factor (IGF) or
epidermal growth factor (EGF)
trigger an event including the
MAPK signaling pathway

* Well studied with dynamics
characterized in ODE/SDE models

- - Latent (unmeasured) N J
Zucker J. et al. (2021). IEEE Trans. Big Data
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cellular membrane

IGF signaling system

* Interested in the causal effect of
Ras on Erk

e Latent confounder between SOS
and PI3K

* P(Erk | do(Ras), SOS) is identifiable
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cellular membrane

N

IGF signaling system

e Assume SOS was not measured

* Now we cannot close the “back-
door” path

* P(Erk | do(Ras)) is not identifiable
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Application of causal inference is dependent on

the experimental design and biological question
of interest

e Targeted Experiment

Construct graph of Decide what Run experiment to

pathway/network proteins need to be measure proteins of
of interest measured interest (SRM/PRM)




Application of causal inference is dependent on

the experimental design and biological question
of interest

e Targeted Experiment

Construct graph of Decide what Run experiment to

pathway/network proteins need to be measure proteins of
of interest measured interest (SRM/PRM)

* Exploratory experiment

Run experiment to Build a graph around Determine what
measure many the proteins that are causal queries are

proteins (DIA/DDA) measured possible
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Targeted experiments allow us to answer a
specific question of interest




Use latent variable model (LVM) to leverage
information from unmeasured proteins

cellular membrane
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* Peptide ions are missing with some probability
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* Multiple cell types are mixed
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Simulate bulk-MS data

* Linear relationships between nodes

* Peptide ions are missing with some
probability of being missing at random and
missing not at random

* Multiple cell types are mixed

Ground truth average causal effect (ACE) '  (amm Fas=10

Ras=20

Average effect of increasing the log,
intensity of Ras by 10 on Erk is 5.85 2000

P(Erk | do(Ras = 20)) — P(Erk|do(Ras = 10)) = 5.85 1000,
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Interventional results are very different from
true effect

Erk Interventional Distribution
1
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Why is the estimation incorrect?




Multiple cell types mixed confounded the
inference

Cell Type

P(Erk | do(Ras)) is not identifiable




Using single cell data, we can observe cell type

[ Cell Type

P(Erk | do(Ras), Cell Type) is identifiable




Using single cells show the true relationship
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Splitting models up by cell result in a more
accurate ACE estimate
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Even when using single cell data, we still need
sufficient replicates
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Even when using single cell data, we still need
sufficient replicates

10 Cells 50 Cells
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n the presence of latent confounders (e.g., bulk
oroteomics) no number of replicates can recover the
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n the presence of latent confounders (e.g., bulk
oroteomics) no number of replicates can recover the
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When observations are MNAR the true
correlation/causal effect is masked
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When observations are MNAR the true
correlation/causal effect is masked

Low Missingness High Missingness

12 12 4

10 10 4

Proteins with low

abundance missing




Causal imputation correctly recovers causal
effect in the presence of missing data
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Single Cell experiment - Leduc et al, 2022
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Leduc A, et al. (2023) Exploring functional protein
covariation across single cells using nPOP, Genome Biol



Building a causal network around measured
proteins

* Creating a hand tailored network across thousands of proteins is very
challenging

* Leverage biological databases to extract causal relationships between
proteins in the system

* We use the INDRA database, which includes causal information
between proteins




Naive network extraction results in unusable
and uninterpretable network

* Many types of connections
may not be relevant
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Thoughtful queries results in reasonable

networks

* Focus on abundance events

* Look at specific pathways of
interest that show correlation in
data

* Filter for edges with high
confidence

* Filter for biologically relevant
guestions

[ FAS J [CDCSLJ




Final causal model

Targeting CDK2 overcomes melanoma resistance
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Pathway of interest
shows correlation in

the data
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Intervention results
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Conclusions

* Estimation of the effect of interventions is possible given
observational single cell data

* Targeted and exploratory studies possible, depending on the goal of
the experiment




Existing challenges

Near term (computational)
* More work to be done on building causal networks

* Data processing of single cell experiments
Long term (experimental)

e Post-translational modifications
* Temporal information
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